İTÜ Özgür Yazılım Kulübü Soru&Cavap sitesine hoş geldiniz.
Hoş geldiniz, İTÜGnu Soru&Cevap sizlere sorularınızın diğer kullanıcılarımız tarafından cevaplanması için bir ortam sağlar.

More about Precision Machining

0 oy

The CBN WavyJoint insert is available in Tungaloy’s new BXA20 grade.

BXA20 is a new substrate, with a lower CBN content, coupled with a new coating that has excellent adhesion strength, making this grade ideal for resisting both crater and flank wear.

The BXA20 coating is a multi-layered titanium aluminum nitride that is 2 times thicker than conventional grades, which enhances flank wear resistance.

The binder in BXA20 has special chemical composition in titanium carbo-nitride base that is well balanced between hardness and toughness. Because of this, BXA20 has very high fracture resistance. This gives BXA20 a wide range of applications from continuous to heavy interrupted cuts.

BXA20 can run at speeds of up to 180 m/min (590 SFM)

WavyJoint is available with an “H” (heavy) edge prep which strengthens the cutting edge, making this ideal for interrupted applications.

This insert is also available with the new HM chip breaker. This breaker enables smooth and reliable chip control, while reducing crater wear on the rake surface. The chip breaker also works to reduce any chatter.

The CBN Wavy inserts are available in CNG*, DNG*, TNG*, VNG* and WNG* geometries.

How precision machining is affecting the future state of medical devices

Precision machining is found in a variety of sectors, including electronics, aircraft, and healthcare. CNC machines are used to make a lot of medical components and devices. The medical equipment industry consists of various medical parts, such as implants for spine reconstruction, knee, and hip replacements, etc.

In an industry where mistakes lead to serious injuries or even death, the machining process of medical parts must be extremely precise. In addition to manufacturing complying with ISO 9001 quality management obligations, medical components and devices must comply with other higher standards.

Medical tools are built with care to ensure that each patient treated is handled with precision. Precision machining is used to manufacture surgical tools, lasers, and even robotics which are now being used in surgeries. CNC Machining provides the know-how, processes, and machinery needed to manufacture these incredibly small parts.

Among all machining techniques, CNC machining has shown to be the best suitable for developing precise medical equipment and instruments. Over time, advancements in CNC processing technology have humanised the manufacture of medical equipment.

CNC Machining in medical device manufacturing

Because of its strong compatibility with the health industry, machinists have begun to tap the potential of CNC medical machining in producing medical precision components. Here are some types of medical equipment that are manufactured using CNC machining:

Surgical tools

CNC machining can produce high-quality surgical tools needed by medical professionals during procedures, such as:

  • Cutters.

  • Surgical scissors.

  • Biopsy tubes.

  • Implant holders.

  • Blade handles.

  • Forceps.

Such CNC manufactured surgical equipment and instruments necessitate meticulousness and precision and additional safety criteria.

CNC machining is a finely detailed and precise process for crafting equipment such as medical instruments. Because certain tools need to be customised for individual patients, they typically are not made using mass production machines. Making custom items by hand can be time-consuming and expensive, but CNC machining allows companies to streamline the process without sacrificing quality and speed of delivery.

23, Şubat, 2022 Ruby kategorisinde verleuyo (280 puan) tarafından soruldu

Bu soruya cevap vermek için lütfen giriş yapınız veya kayıt olunuz.

...