İTÜ Özgür Yazılım Kulübü Soru&Cavap sitesine hoş geldiniz.
Hoş geldiniz, İTÜGnu Soru&Cevap sizlere sorularınızın diğer kullanıcılarımız tarafından cevaplanması için bir ortam sağlar.

How Does a Generator Create Electricity? 

0 oy

 

Kohler.jpgGenerators are useful appliances that supply electrical power during a power outage and prevent discontinuity of daily activities or disruption of business operations. Generators are available in different electrical and physical configurations for use in different applications. In the following sections, we will look at how a multi-function immunity generator functions, the main components of a generator, and how a generator operates as a secondary source of electrical power in residential and industrial applications.

 

An electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as the output.

 

It is important to understand that a generator does not actually ‘create’ electrical energy. Instead, it uses the mechanical energy supplied to it to force the movement of electric charges present in the wire of its windings through an external electric circuit. This flow of electric charges constitutes the output electric current supplied by the voltage dip generator. This mechanism can be understood by considering the generator to be analogous to a water pump, which causes the flow of water but does not actually ‘create’ the water flowing through it.

 

The modern-day generator works on the principle of electromagnetic induction discovered by Michael Faraday in 1831-32. Faraday discovered that the above flow of electric charges could be induced by moving an electrical conductor, such as a wire that contains electric charges, in a magnetic field. This movement creates a voltage difference between the two ends of the wire or electrical conductor, which in turn causes the electric charges to flow, thus generating electric current.

 

Extensive efforts have been made to harvest energy from water in the form of raindrops1,2,3,4,5,6, river and ocean waves7,8, tides9 and others10,11,12,13,14,15,16,17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects—as seen in characterizations of the charge generation and transfer that occur at solid–liquid1,2,3,4 or liquid–liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.

 

Extensive efforts have been made to harvest energy from water in the form of raindrops1,2,3,4,5,6, river and ocean waves7,8, tides9 and others10,11,12,13,14,15,16,17. However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic ESD Generator that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects—as seen in characterizations of the charge generation and transfer that occur at solid–liquid1,2,3,4 or liquid–liquid5,18 interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.

 

The uses of natural gas, fuel, and coal to generate electricity have become detrimental for human-beings because of their adverse effects on atmospheric pollution and global warming. Nevertheless, according to the US Energy Information Administration (EIA), electricity generated from power plants using natural gas was increasing every year with 28% in 2014, 35% in 2018 and 36% in 2019 (U.E.I. Administration, 2018). Furthermore, the world consumption and production of liquid fuels increased from 94 million barrels per day in mid-2014 to 100 million in mid-2018, which is leading to an ever-increasing energy cost. To cope with this global growth in the consumption of fossil fuels, quite expensive and polluting, other forms of environment-friendly energies arose in the last decades. Indeed, Nicolas Tesla once said: “Electric power is everywhere present in unlimited quantities and can drive the world’s machinery without the need of coal, oil, gas or any other of the common fuels”. This quote anticipates the current new trend of harvesting natural energy from the environment to provide unlimited, sustainable, green and cheap electrical power. Nowadays the growing interest in using renewable energy, that can be scavenged from several natural abandoned sources such as RF radiation, thermal, solar, vibratory/mechanical energy, etc., and converting it into electrical one to supply the world’s electronic devices and machinery, is growing exponentially. 

16, Şubat, 2022 Ruby kategorisinde duceinrg (300 puan) tarafından soruldu

Bu soruya cevap vermek için lütfen giriş yapınız veya kayıt olunuz.

...