İTÜ Özgür Yazılım Kulübü Soru&Cavap sitesine hoş geldiniz.
Hoş geldiniz, İTÜGnu Soru&Cevap sizlere sorularınızın diğer kullanıcılarımız tarafından cevaplanması için bir ortam sağlar.

Three Common Methods of Incubator Sterilization Explained

0 oy

 

There are many methods provided by manufacturers to facilitate Incubator self-decontamination. Three of the most common methods are:

  1. UV sterilization

  2. Moist heat sterilization

  3. Dry heat sterilization

This article will examine these three types of sterilization in detail.

 

1. UV Sterilization

DNA nucleotides harbor the kinds of conjugated bonds that absorb UV light. UV sterilization generates an antimicrobial effect by the damage it causes to a microorganism’s DNA when aromatic nucleotides absorb high energy photons. This can make UV sterilization an effective solution to reduce contamination in an incubator chamber.

However, there are significant drawbacks. Your light source would need to have unrestricted access to all surfaces of the Multifunctional Incubator chamber, shelves, and shelf mounting hardware. Shadowed regions will not be decontaminated by UV light. Also, a common method for microorganisms to survive UV exposure is through enhanced DNA repair mechanisms. In this case, survivors of a UV cycle will be more likely to survive repeat treatments.

Plus, UV light is generally not effective in destroying endospores. Microorganisms which survive the UV decontamination process will potentially have the opportunity to form monocultures and increase their likelihood to reach quorum. This is unless UV sterilization is combined with other methods of incubator decontamination, such as a tear-down and washing of all surfaces, a dispersed chemical treatment, or an effective high-heat cycle.

 

2. Moist Heat Sterilization

Moist heat decontamination is often employed on incubators that are not designed to safely reach the high temperatures needed for an effective dry-heat sterilization regime. This may be due to a risk of damage to internal components or the risk of overheating the incubator’s outer body.

Traditional Autoclaves operate by heating to ~121°C and applying elevated steam pressure to increase rates of thermal transmission to targeted contaminant organisms. A moist heat decontamination cycle performed above but close to 100°C and at ambient pressure is guaranteed to be less effective than an autoclave, and does not meet any medical organizational criteria for SAL6 sterilization. SAL6 represents a Sterility Assurance Level of 10-6 meaning you get a Log6 reduction of microorganisms.

Interestingly, the archaea Geogemma barossii, better known as “Strain 121,” is a species of microorganism that has been shown to grow and reproduce successfully in a pressurized Horizontal Pressure Steam Sterilizer at 121°C.

 

What are Drying Ovens Used for?

Despite the fact that most people associate the word oven with the benefits of baking, industrial models are present in food manufacturing, pharmaceutical, and even in painting processes.

The main job of an industrial Drying Oven is to remove moisture from substances or products. This means that it can be used for evaporation, incubation, sterilization, baking, and many other procedures. Keep in mind that industrial ovens vary in size, capacity, and shape, depending on what they are used for, so the perfect model will depend on the application it is given.

 

Types of Industrial Drying Ovens

Even though industrial Hot Air Drying Ovens share the same core concept, there are dozens of different types of technologies available. Industrial ovens vary in heating mechanisms, time and volume capacities, and other key elements, depending on your industry.

Keep in mind that even if there isn’t a standard design that suits your operation, a custom industrial oven is a great way to significantly improve your factory’s efficiency.

19, Kasım, 2021 Ruby kategorisinde gowreply (280 puan) tarafından soruldu

Bu soruya cevap vermek için lütfen giriş yapınız veya kayıt olunuz.

...